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ABSTRACT
Agents often want to protect private information, while at
the same acting upon the information. These two desires
are in conflict, and this conflict can be modeled in strategic
games where the utility not only depends on the expected
value of the possible outcomes, but also on the information
properties of the strategy an agent uses. In this paper we
define two such games using the information theory concepts
of entropy and relative entropy. For both games we compute
optimal response strategies and establish the existence of
Nash equilibria.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence—Multiagent systems; K.4.4 [COMPUTERS

AND SOCIETY]: Electronic Commerce—Security

General Terms
Theory

Keywords
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1. INTRODUCTION
Information is valuable, and thus agents do not always want
to give it away. Both organisations and individuals often
want to keep certain information private. At the same time
they might want to act upon it. Does this reveal the infor-
mation? In this paper we study how agents should act if
they want to maximize their utility, while at the same time
not giving away too much information. We do this by defin-
ing games in which the utility for each agent does not only
depend on the payoff of the chosen action, but also on the
information properties of the used strategy. These games
can be applied to the following situations.
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• Supermarkets and e-commerce shops register which
customer buys what. Customers know this and even
assist in this process by using so-called ‘bonus cards’
(Albert Heyn) or ‘club cards’(Tesco). Nevertheless
many customers are worried about their privacy. They
would prefer it if the shop knew less about them. Cus-
tomers can do something to minimize the knowledge
of the shop. First of all they can make their shop-
ping less regular (i.e. randomly buy items so that the
shop is not sure which products the customer actually
uses). Secondly they can sign up for more than one
card(account) or swap cards between each other. On
the Internet, deleting cookies with random intervals
and using a different IP number can have the same
effect.

• In a second prize auction it is optimal to bid exactly
as much as you think the item is worth [11]. However,
you might have spent a lot of time to estimate the
value of the item, so you do not want to reveal your
estimate. Since your bid has to be public, it seems
that you might do better by bidding slightly random.
By modeling this as a minimal information game, one
can compute how one should randomise. A similar ar-
gument applies when you send out an artificial agent
to do your shopping. If the agent is sent over an in-
secure network, everyone can inspect the source code
and thus the bidding strategy of the agent. You might
not want to send an agent that is exactly optimal for
your preferences, in order to hide your preferences.

• Many public places are now guarded by closed circuit
television systems. If you come to one such place reg-
ularly, the camera attendants learn a lot about your
habits and thus about you. You feel this as a breach of
your personal privacy, and decide to hide your habits
by changing your behaviour often, for instance by go-
ing to different shops in a different order every time.
This situation can also be modeled as a minimal infor-
mation game. Again one can translate this example to
the domain of artificial agents and the Internet.

• Consider now the case of a criminal who wants to steal
from a shop guarded by a closed circuit television sys-
tem. He wants to look like a regular shopper, but has
different goals. He thus wants to behave so that he
can steal the most, while at the same time appear to
be a normal shopper. This can be modeled as a most
normal game.



In this paper we define the two types of games mentioned,
the minimal information game and the most normal game.
As the similar setting of the last two examples suggest, these
two games are related. From these examples it should also
be clear that we assume that the strategies that agents use
are publicly known. This assumption makes our results
stronger (if you have privacy while your strategy is pub-
lic, you will have even more privacy when you can keep your
strategy secret).

Privacy has received a lot of attention from economists or
in a legal setting. Some key sources have been collected
on a website [1]. This paper differs from these economic
papers for two reasons. First of all we only deal with per-
sonal information privacy, whereas the word ‘privacy’ also
has other meanings. The second difference is that these pa-
pers try to explain the need for personal privacy in terms of
economic utility. Odlyzko for instance relates privacy and
price discrimination [14]. This paper is written under the
assumption that privacy is a fundamental value, that is not
instrumental to any gain. Privacy itself is a good cause that
can be enjoyed directly.

The games defined in this paper use a soft approach towards
information. They deal with probabilities explicitly, and can
make subtle distinctions between possible, likely and almost
certain events. This soft approach can be contrasted to the
hard approach of logic and model checking. When taking
a hard approach in protocol analysis, one is only interested
in what is possible and what not, with a complete disregard
for the relative likelihoods of different outcomes. Both the
soft and the hard approach have been used for multi agent
systems. The use of epistemic logic to understand the game
of Cluedo [17] is an example of the hard approach, as well as
other logical approaches to reasoning about knowledge and
knowledge change [8, 4, 16, 3, 19]. Recent work on privacy
preserving auctions [5] and work on the Dining cryptogra-
pher problem [6] or the Russian Cards problem [17, 18] can
also be classified as ‘hard’. At the same time there is some
work on reasoning about uncertainty [9, 10] that combines
logic and a soft approach to information. The soft approach
is more precise than the hard approach and in certain cir-
cumstances this is an advantage. The hard approach can
tell us that agents do best by randomising their strategy,
but does not indicate the exact probabilities of an optimal
strategy. On the other hand the higher level of abstraction
of the hard approach makes it easier to interpret the results.

The layout of this paper is as follows. Section 2 describes
a detailed example problem. The next section, section 3,
introduces basic information theory notions such as entropy.
Then we introduce strategic games in section 4. In section
5 we define minimal information games, and calculate the
best strategies in these games. In section 6 we do the same
for most normal games. Then we present our conclusions
in section 7. Finally section A of the appendix contains a
technical result that is not essential to the main argument
of this paper.

2. EXAMPLE
The following problem serves as an example. Alice (agent
1) needs to buy one box of breakfast cereals every week.
Every week she is faced with the following choice: whether

to buy Allgrain(A), Barley(B) of Cornflakes(C ). Alice is
not indifferent to which brand she eats. In fact she likes A
better than B and B better than C , as is indicated by the
following matrix of utilities.

action A B C
utility 3.0 2.0 1.0

If Alice is solely interested in maximising her expected util-
ity, she should buy A every day. However Alice knows that
the shop is watching her shopping behaviour closely, and she
is concerned about her privacy. She decides that the decision
that she makes should be private, and she can achieve this
by flipping a coin and letting her decision depend on this
coin flip. This way the shop cannot predict her decision.

Alice first attempts to use the following random strategy.

action A B C
probability 0.98 0.01 0.01

If Alice uses this strategy, then the shop does not know any-
thing about her decision: all three actions may occur with
positive probability. At the same time her expected payoff is
still very high, because the suboptimal actions occur with a
very low probability. Problem solved, so it seems. But this
is not the whole story. Even though the shop does not gain
any knowledge, it does gain information from this strategy.
If the shop learns, from repeated observation, that Alice
uses this strategy, then it is quite certain that she will buy
A. Therefore the shop has gained quite a lot of information.
Therefore the indicated strategy is not the right strategy if
one analyses the situation using information theory.

One can argue that if Alice is concerned about her privacy,
then that fact should be represented in her utility function.
This is not possible, because the utility function can only
express properties of single actions, whereas privacy is a
property of the whole strategy. One could also decide to
include an extra player that tries to guess Alice’s actions. It
is however not clear how one should estimate all the variables
that one needs for this larger game. These consideration
have convinced us that it is easier to treat privacy as an
independent aspect of an agent’s utility.

3. INFORMATION THEORY
Information theory is the field of science that deals with the
measurement of information [7]. It has applications in sig-
nal processing,communication networks, cryptography and
error correction codes. In this paper we use information the-
ory, and its central notion entropy, to estimate the amount
of information in strategies. Strategies will be modeled as
stochastic variables ranging over a finite set of actions, so
we define entropy over stochastic variables. The entropy of
a stochastic variable is the amount of randomness in, the
disorder of, or uncertainty about the value that the variable
will take. The concept of entropy has been introduced by
Shannon [15]. We define the following function f (x , y). Let



lg be the base 2 logarithm.

f (x , y) =







0 if x = 0 and y = 0
∞ if x > 0 and y = 0
−x lg y if x ≥ 0 and y > 0

For a random variable X we define the entropy E (X ), which
is measured in bits, in the following way.

E (X) =
∑

k

f (p(X = k), p(X = k))

A random variable X with values in the domain {1, 2, . . . , m}
can be specified by giving a vector of length m with the prob-
abilities of each value: (p(X = 1), p(X = 2), . . . , p(X =
m)). For a mixed strategy, the numbers {1, 2, . . . ,m} rep-
resent the available actions. A requirement for probabil-
ity measures on stochastic variables is that the probabilities
should add up to 1. We can thus only use vectors x that
indeed add up to 1. Define the sets Pm and Qm .

P
m ={x ∈ [0, 1]m |

∑

i

xi = 1}

Q
m ={x ∈ (0, 1]m |

∑

i

xi = 1}

The set Pm contains all vectors of length m that add up to
1, and Qm contains all vectors that add up to 1 and do not
take the value 0. The set Qm is important in some of the
proofs, but often we work with the more general set Pm .
We can apply the notion of entropy to probability vectors
x ∈ Pm .

E (x ) =
∑

k

f (xk , xk )

In the context of strategies, a strategy with a higher entropy
leaves observers with more uncertainty, and thus gives the
agent that uses that strategy more privacy. Below we give
five examples of entropy. The example strategy vectors can
all be seen as strategies over three basic actions. A strat-
egy (a, b, c) contains the probability a of selection the first
action, b for the second action and c for the third.

E ((1/3, 1/3, 1/3)) =1.585 bits

E ((0.5, 0.25, 0.25)) =1.5 bits

E ((0.5, 0.5, 0)) =1 bit

E ((0.98, 0.01, 0.01)) =0.161 bits

E ((1.0, 0, 0)) =0 bits

Pure strategies, in which only one action gets a positive
probability, have an entropy of zero bits. The entropy func-
tion is bounded. It cannot be negative, and a vector x of
length m can have at most an entropy of lg m. It has this en-
tropy if all the entries xi are equal to 1/m, thus if the vector
represents a stochastic variable with a uniform distribution.

The second idea that we use from information theory is rela-
tive entropy [7]. The function r(x , y) can be used to compare
two probability vectors x , y ∈ Pn . The underlying idea is
that r(x , y) measures how much difference one would notice
if probability vector x is used instead of y for selecting ac-
tions. In order to compute this difference, we add up the
differences for each action k . Using Bayes’ law one can derive
that the relative likelihood of strategy x instead of strategy
y when observing that action k is chosen is xk/yk . This

observation is the motive behind the following definition.

r(x , y) =
∑

k

f (xk , yk/xk )

The function r almost behaves as a norm or distance func-
tion. It is never negative and only zero if x = y . It is
infinite if for some k it is the case that xk > 0 and yk = 0.
The only difference between this function and a distance or
norm function is that r is not symmetric. In many cases
r(x , y) 6= r(y , x ).

r((0.5, 0.5), (0.75, 0.25)) =0.2075 bits

r((0.75, 0.25), (0.5, 0.5)) =0.1887 bits

r((0.9, 0.1), (0.75, 0.25)) =0.1045 bits

r((0.75, 0.25), (0.9, 0.1)) =0.1332 bits

If x has a higher entropy than x ′, then on average for a
random vector y it is the case that r(y , x ) < r(y , x ′). It is
harder to notice a difference between y and a high entropy
vector x than to notice a difference between y and a low
entropy vector x ′.

4. STRATEGIC GAMES
Games can be presented in different forms. A very natural
but detailed form is as an extensive game. In this form there
are a number if decision points in each play of the game,
and the outcome is determined by all these decisions. This
model is too detailed for our purposes. Therefore we study
games in strategic or normal form. In this form, each agent
has a number of strategies available at the beginning of the
game, and each agent independently picks a strategy. We
can calculate the utility of each agent in the game directly,
without going into details which actions have been played.
The general definition for an n-agent normal form game is
the following. We let Σ be the set of all agents, and assume
that Σ = {1, 2, . . . , n} for some n > 0.

Definition 1. A game G is a tuple (Σ, {S}Σ, p) where
for each X ∈ Σ the set SX is a set of strategies for agent X ,
and p : (S1 × . . . × Sn) → R

Σ is a utility function.

Each agent tries to maximize its utility. The sets of strate-
gies do not have to be finite. A vector ~s = (s1, . . . , sn ) is
a strategy vector for game G if G = (Σ, {S}Σ, p) and for
all i we have si ∈ Si . If t ∈ Sj then we define [s−j , t ] =
[s1, . . . , sj−1, t , sj+1, . . . , sn ] as the strategy vector where sj
is replaced by t . For example [(a, b, c)−2, d ] = (a, d , c). 1

We assume that every agent X always has a finite number of
basic actions mX to choose from, and that the total utility
of a strategy somehow depends on the payoff of each ac-
tion. The payoff of each action is typically given in the form
of a matrix A. Since the number of agents may be larger
than two, we extend the idea of a matrix to the following

1It is a game-theoretic convention that s−j denotes the vec-
tor s with the j th element removed. Thus (a, b, c)−2 =
(a, c). The construct [s, x ] is used to denote the vector
s with x inserted in an appropriate place: [(a, c), d ] =
(a, d , c). Determining what the appropriate place is can
be difficult, therefore I only define the combination of these
two constructs.



definition of a multi-matrix. A m1 × m2 . . . × mn multi-
matrix is a function A such that for each vector i1i2 . . . in
with ij ∈ {1, . . . , mj} and X ∈ {1, . . . , n}, the function A
returns a real number AX (i1i1 . . . in) ∈ R. The expres-
sion A(i1i2 . . . in) denotes a real vector v ∈ R

Σ such that
v1 = A1(i1i2 . . . in), v2 = A2(i1i2 . . . in) etcetera.

For a given multi-matrix A one can define different games.
The simplest type of game is the pure strategy game. In this
game the strategy of each agent X consists of a single action
aX and the payoff is then A(a1 . . . an). This definition does
not allow agents to play randomly. For our purposes this
definition is thus too restrictive. In a mixed strategy game,
the strategy of an agent is a probability distribution over
the available actions. The payoff is the expected (weighted
average) value of A. This type of game is defined in the next
definition.

The shorthand AX
i (~s) denotes the expected payoff of action

i for agent X when the other agents use strategies from
~s . It can be defined in the following way. Define the set
V X

i = {~v |vY ∈ SY , vX = i}. Thus this set contains the
pure strategy profiles in which agent X selects action i .

AX
i (~s) =

∑

~v∈VX
i

(sv1 · · · svX−1
svX+1

· · · svn )AX (~v)

Definition 2. Let A be a m1×m2 . . .×mn multi-matrix.
The mixed strategy game Mm(A) of A is a tuple (Σ, {SX }, U)
where Σ = {1, 2, . . . , n}, the strategy sets are SX = PmX and
U

X (~s) =
∑

i
sX
i AX

i (~s)

The fact that agents can play mixed strategies is explicitly
defined in this definition of a mixed strategy game. We as-
sume that all agents are equipped with random number gen-
erators (coins, dice or whatever) so that they can randomize
their behavior exactly as specified in their strategy.

The central question in game theory has always been the
question about the ‘solution’ of a certain game. Intuitively
the solution is the strategy vector containing the best possi-
ble strategy for each agent. However not every game has a
unique solution in this sense. Therefore game theorists work
with different solution concepts. One of the best known is
the Nash Equilibrium. Every mixed strategy game has a
Nash equilibrium, but very often it is not unique.

For the next definition we need the function argmax that re-
turns all inputs that maximize a given function. argmaxx f (x ) =
{x |¬∃y : f (x ) < f (y)} We use the function argmax to de-
fine what a ‘good’ strategy is: A good strategy is a strategy
that returns a maximal utility. The function bX returns the
best response strategies for agent X for a given game and
strategy vector.

Definition 3. Let (Σ, {S}Σ, p) be a game and ~s ∈ (
∏

X
SX )

a strategy profile. The best response b(~s) = b1(~s) × · · · ×
bn (~s)) is defined by

bX (~s) = argmaxt U
X ([s−X , t ])

The set b(~s) thus contains the strategy vectors t such that
tX is optimal if all opponents Y use the strategy sY . In a
decision theory problem we could assume that the strategy
of the opponents is fixed. The set bX (~s) is the set of best
decisions for agent X . In game theory things are not that
simple, because the other agents might want to change their
strategy once they learn that X uses a strategy in U

X (~s).
However this interaction is nicely captured by the definition
of a Nash equilibrium.

Definition 4. Let (Σ, {S}Σ, U) be a game and ~s ∈ (
∏

X
SX )

a strategy profile. The vector ~s is a Nash Equilibrium iff
~s ∈ b(~s)

Every mixed strategy game has at least one Nash equilib-
rium [13]. There has been some discussion in the literature
whether the notion of a Nash equilibrium needs to be re-
fined. Several refinements have been proposed, but none of
them have the appealing simplicity of the Nash equilibrium.

5. MINIMAL INFORMATION GAMES
The next definition of a minimal information game aims
to capture the following situation. Agents choose a mixed
strategy with two goals in mind. First of all they want a
high payoff. Secondly they want privacy. They feel that
they have more privacy if others are more uncertain about
the action they will choose, and thus they prefer strategies
with a high entropy. These games thus model the situation
where agents have a fundamental desire for privacy.

We have to specify how the agent would like to trade privacy
against payoff. This is governed by a parameter α > 0
that indicates the value of privacy. It expresses how much
expected payoff the agent is willing to trade against a bit of
privacy. The higher α, the more the agent values privacy.

Definition 5. Let A be a m1 ×m2 . . .×mn multi-matrix
and α > 0. The minimal information game M α

i (A) is a
tuple (Σ, {SX }, U) where Σ = {1, 2, . . . , n}, the strategy sets
are SX = PmX and U

X (~s) =
∑

i
sX
i AX

i (~s) + αE (sX )

The parameter α regulates how much all the agents value
the fact that there is uncertainty over their next action. If
we would allow α = 0, then the game becomes a mixed
strategy game: M 0

i (A) = Mm(A). As α approaches infinity,
the actual payoff becomes less and less important. It would
have been possible to choose α differently for each agent,
but this would have made the definition less clear. One can
always scale the utilities in such a way that one value for α
works for all agents.

As an example, we consider the shopping game from the
introduction. This game has only one agent, that has three
options A,B ,C with respective payoffs 3, 2, 1. The optimal
strategies for the minimal information game with different
values of α is given in the next table. It also lists the utility
of s that the agent would get in the mixed strategy game
Mm(A) for the given strategy s and the utility that the agent
would get in the minimal information game M α

i (A).



α p1 p2 p3 Mm(A) M α
i (A)

0.1 0.999 4 · 10−5 2 · 10−9 3.0 3.0
0.5 0.876 0.117 0.015 2.852 3.168
1.0 0.665 0.244 0.090 2.575 3.775

The best payoff that the agent can get is 3.0 by only choos-
ing the first action. However this would result in no privacy,
because if the agent would use this strategy, then any ob-
server knows beforehand what the agent will do every day.
For a low value of α the utility of s in M α

i (A) is very close
to this optimal value of 3. For higher values, the average
payoff without entropy becomes lower. We could call this
the cost of privacy. From the table we can see that if the
agent values privacy at one unit per bit (α is expressed in
units per bit) then the agent does best by paying 0.425 in
order to obtain 0.775 bits of privacy.

The question is of course how we can calculate the strategies
that maximize the utility in minimal information games.
For the linear functions of the mixed strategy games this
is trivial, but for more complicated functions this can be
difficult.

Theorem 1. Let M α
i (A) be a minimal information game

and ~s a strategy profile. The set bX (~s) is a singleton {b}
such that

bi =
2α−1AX

i (~s)

∑

k
2α−1AX

k
(~s)

Proof. Let M α
i (A) = (Σ, {S}Σ, U) be a minimal infor-

mation game. We have to prove that the set bX (~s) contains
one element, and that that element is described by the given
formula. We first show that all points in b(~s) are interior
points. Then we derive an equation that any best response
must satisfy, and show that this equation has a unique so-
lution, namely the one given in the theorem.

Take any vector ~x ∈ Pn \ Qn . We are going to show that
there is a better vector ~y , and thus ~x is not a best response.
There is some i such that xi = 0 and some j such that
xj 6= 0. We will show that there is some ε such that ~y =
[[x−i , ε]−j , xj − ε] is a better vector: U

X (~y) > U
X (~x ). To

show this, note that the utility function U
X is continuous

and differentiable. Note further that δ
δxi

U
X (~x ) = +∞ and

δ
δxj

U
X (~x ) < +∞. Therefore, for sufficiently small ε, the gain

from raising xi outweighs the potential loss from lowering
xj . Therefore for sufficiently small ε we have that U

X (~y) >
U

X (~x ) and thus ~x /∈ b(~s).

Now suppose that b ∈ bX (~s). We know that b ∈ Qn . Take
i , j ∈ {1, 2, . . . ,m} as two different indices. Since b is opti-
mal, it should not be possible to increase U

X by increasing
bi while decreasing bj , and therefore for any optimal point
it must be the case that δ

δbi
U

X ([~s−X , b]) = δ
δbj

U
X ([~s−X , b]).

We can use this as a starting point for the following link of
equations. Fist we compute the derivative δ

δbi
U

X ([~s−X , b]).

δ

δbi

U
X ([~s−X , b]) =

δ

δbi

(
∑

j

bjA
X
j ([~s−X , b]) + αE (~b)) =

AX
i (~s) + α

δ

δbi

(E (~b)) =

AX
i (~s) + α(− lg bi − lg e) =

AX
i (~s) − α lg bi − α lg e

Using this derivative one can reduce the equation given
above in the following way.

δ

δbi

U
X ([~s−X , b]) =

δ

δbj

U
X ([~s−X , b]) ⇔

AX
i (~s) − α lg bi = AX

j (~s) − α lg bj ⇔

AX
i (~s) − AX

j (~s) = α lg bi − α lg bj ⇔

2AX
i (~s)

2AX
j

(~s)
=

bα
i

bα
j

Since b ∈ Pn it must be the case that b sums up to
∑

i
bi =

1. For any b ∈ b(~s) one can find some positive constant c

such that bi = c · 2α−1AX
i (~s). It now follows from the above

equation that for any bj it is the case that bj = c2α−1AX
j (~s).

We can now calculate
∑

k
bk = 1 = c

∑

k
2−αAX

k (~s) and thus

we know that 1
c

=
∑

k 2α−1AX
k (~s). Thus we have proven

that there is a unique point b ∈ bX (~s) which satisfies the
equation in theorem 1

Theorem 2. Every minimal information game M α
i (A)

has a Nash equilibrium.

Proof. Let f be the function from S1 × . . .× Sn to S1 ×
. . . × Sn that returns the strategy vector with the best re-
sponses for each agent. Thus f is the function that for each
x returns the unique point f (x ) such that f (x ) ∈ b(x ). The
previous theorem shows that this is a continuous function.
The set S1 × . . . Sn is topological isomorphic to some closed
sphere B

m . We can now use Brouwer’s fixed point theorem,
which tells us that every continuous function f : B

m → B
m

must have a point x with f (x ) = x [2]. We thus obtain a
strategy vector x with f (x ) = x , and thus a point x such
that x ∈ b(x ). This point is a Nash equilibrium.

6. MOST NORMAL STRATEGIES
So far we have discussed the situation in which the agents
try to protect their privacy against an opponent interested in
their next action. In this section we look another situation,
in which agents try to hide their preferences. The assump-
tion is here that an average strategy for ‘normal’ users is
given. One agent however has different preferences from the
normal users, but does not want to be identified as not nor-
mal. Therefore the agent is searching for a strategy that
appears as normal as possible and maximizes its payoff at
the same time.

We approach the problem in exactly the same way as we
have approached the first problem. We define most normal



games Gα
n (A) that depend on a parameter α expressing how

important normal behaviour for the agent is.

Definition 6. Let A be a m1×m2 . . .×mn multi-matrix,
let α > 0, and let ~t be a strategy vector for the game Mm(A).
The most normal game M α

n (A,~t) is a tuple (Σ, {SX }, U)
where Σ = {1, 2, . . . , n}, the strategy sets are SX = PmX

and U
X (~s) =

∑

i sX
i AX

i (~s) − αr(sX , tX )

The parameter α again determines the trade-off between
selecting actions with a high payoff and acting normal.

Theorem 3. Let M α
n (A,~t) be a most normal game and ~s

a strategy profile for this game. The set bX (~s) is a singleton
{b} such that

bi =
tXi 2α−1AX

i (~s)

∑

k tXk 2α−1AX
k

(~s)

Proof. Let M α
n (A,~t) be a most normal game, ~s a strat-

egy profile and X ∈ Σ an agent. Suppose that b ∈ bX (~s) is
the best response for agent X and let i be one of B ’s actions.
If ti = 0 and bi 6= 0, then the relative entropy becomes in-
finite, and the utility thus infinitely low. This cannot be
optimal, thus if b maximizes the utility, then ti = 0 implies
bi = 0. Thus in this case the optimal point is not an interior
point. It follows that if ti = 1, then for any optimal strategy
b we must have bi = 1.

Consider now the case where ti > 0. We calculate the deriva-
tive of the relative entropy function.

δ

δbi

r(b, tX ) =
δ

δbi

∑

i

−bi (lg tXi − lg bi ) = lg bi + lg e − lg tXi

We see that if bi > 0 approaches zero, then this derivative
becomes negative infinity. If bi is sufficiently small, then we
would lower the utility U

X ([~s−X , b]) by decreasing bi further.
Therefore for any optimal value of b, it cannot be the case
that ti > 0 and bi = 0.

Since we have shown that ti = 0 implies bi = 0, it remains
for us to find the optimal vector in the space S = {b ∈
[0, 1]m |

∑

i
bi = 1 ∧ (ti = 0 → bi = 0)}. The previous

argument has shown that b is an interior point of this set
S . Such points can only be optimal if δ

δbi
U

X ([~s−X , b]) =
δ

δbj
U

X ([~s−X , b]) for any pair i , j with ti , tj > 0. The next

computation will show that there is a unique point satisfying
this condition. Since any continuous function on a closed
domain must have a maximum, this point b will maximize
agent X ’s utility in the normal form game.

First we calculate the derivative.

δ

δbi

U
X ([~s−X , b]) =

AX
i (~s) − α

δ

δbi

r(b, tX ) =

AX
i (~s) − α(lg bi + lg e − lg tXi ) =

AX
i (~s) − α lg bi − α lg e + α lg tXi

Now find the points b where the derivatives δ
δbi

U
X and

δ
δbj

U
X are equal.

δ

δbi

U
X ([~s−X , b]) =

δ

δbj

U
X ([~s−X , b]) ⇔

AX
i (~s) − α lg bi + α lg tXi = AX

j (~s) − α lg bj + α lg tXj ⇔

α lg(bi/bj ) = AX
i (~s) − AX

j (~s) + α lg(tXi /tXj ) ⇔

bi

bj

=
tXi 2α−1AX

i (~s)

tXj 2α−1AX
j

(~s)

Again we can choose c such that bi = ctXi 2α−1AX
i (~s) and

show that 1/c =
∑

k
tXk 2α−1AX

k (~s). This leads to the next
formula.

bi =
tXi 2α−1AX

i (~s)

∑

k
tXk 2α−1AX

k
(~s)

This formula gives us bi = 1 if ti = 1, and bi = 0 if ti = 0.
Therefore this formula gives us the optimal strategy for any
normal form game.

Discussion
One consequence of the theorem is the following observation.
If a certain action i is not considered by normal agents (tX

i =
0) then the non-normal agent should not consider action i
either (bi = 0). If one had used a hard, logical approach
one could have reached the same conclusion. In the most
extreme case one can consider the case where normal agents
use a pure strategy. In that case the non-normal agent has to
use the same pure strategy. If the non-normal agent values
all actions equally, he also does best by copying the normal
strategy. In all other cases the best strategy for the non-
normal agent is different. Apparently the agent does best
by always taking some risk and getting a higher utility.

7. CONCLUSION
We have defined two new kinds of games. First of all min-
imal information games, in which agents want to maximize
the uncertainty that observers have over their next move.
Secondly most normal games, in which agents want to be-
have as similar as possible to an existing ‘normal’ agent,
while maximizing their payoff. In order to do so we bor-
rowed the concepts entropy and relative entropy from infor-
mation theory. In two theorems we have shown what the
optimal best responses are in these games. These turn out
to be unique in each situation, and to depend continuously
on the payoff matrix and the opponent strategies. From this
continuity one can derive that Nash equilibria exist in these
games.

Minimal information games can be used to analyse situa-
tions with privacy-minded agents. If agents attach some
value of privacy, the best strategy always gives them some
privacy.

In most normal games, the situation is slightly more compli-
cated. How well the non-normal agent X can do, depends
very much on the strategy that normal agents use. If the
normal agents use a pure strategy, then X has no choice but
to adopt the same strategy. The situation however becomes
a lot better if the normal agents are privacy-minded. In that



case they choose a high-entropy strategy, and this leaves the
wanting-to-be-normal agent a lot of room to pursue its own
agenda.

One can extend the work in these games in several ways.
First of all it would be interesting to look at experimental
data, to see whether most-normal or minimal-information
strategies are used in the real world. Secondly one could
implement these strategies in order to obtain privacy. The
question is then whether the soft approach to privacy is what
users want. A small simulation is available at:
www.bluering.nl/sieuwert/programs/privacysim/simprivacy.html

On a theoretical side, it seems that these games give ap-
proximations to the Nash equilibrium with very nice techni-
cal properties. Two of these properties are continuity of the
best response function and the fact that best responses are
always interior. In the appendix of this paper we already
use minimal information games to define a refinement of the
Nash equilibrium, as an example how these properties are
technically useful.
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APPENDIX
A. EQUILIBRIUM REFINEMENTS
In this appendix a refinement of the Nash equilibrium is
defined in order to make some technical observations.

By introducing minimal information games we have intro-
duced a game with a new kind of utility function. For small
values of α the game M α

i (A) is very similar to the mixed
strategy game Mm(A). One can, with some imagination,
see a Nash equilibrium x of M α

i (A) as a solution of Mm(A).
In that case, one has a new solution concept for mixed strat-
egy games Mm(A). Such a solution x of some game M α

i (A)
is not a Nash equilibrium of Mm(A), but an approximation
of it. How good this approximation is depends on the pa-
rameter α. We can define a Nash equilibrium by letting α
approach zero. This way, we can define a ‘minimal informa-
tion’ equilibrium.



Definition 7. The strategy profile x is a minimal infor-
mation equilibrium of Mm(A) iff there is a sequence α0, α1, . . .
of positive numbers such that limi→∞ αi = 0, a sequence
x0, x1, . . . such that xi is a Nash equilibrium of M αi

i (A) and
limi→∞ xi = x .

Theorem 4. Every mixed strategy game Mm(A) has a
minimal information equilibrium.

Proof. Define the sequence β0, β1, . . . by βi = 1/i . This

sequence converges to zero. By theorem 2 each game M βi
i (A)

has some Nash equilibrium yi . The strategy space S1 ×
. . . × Sn is a closed and bounded subset of R

m for some m.
Therefore, since any closed and bounded subset of R

m is
compact [20] we derive that every sequence in S1 × . . . × Sn

has some converging subsequence. Let x0, x1, . . . be a con-
verging

subsequence of y0, y1, . . . and let x be the limit of limi→∞ xi .
Let α0, α1, . . . be the corresponding subsequence of β0, β1, . . .,
so that xi is a Nash equilibrium of M αi

i (A). When α con-
verges to infinity, the utility function of M αi

i (A) converges
uniformly to the utility function of Mm(A). Since xi is al-
ways maximizing each agents utility in M αi

i (A), it must be
the case that x maximizes the utility of Mm(A) for each
agent. Therefore x is a Nash equilibrium of Mm(A).

Every minimal information equilibrium is a proper equilib-
rium as defined by Myerson, and therefore it is also a trem-
bling hand perfect equilibrium [12]. These refinements can
thus be motivated (if one wants to) by an appeal to privacy
minded agents. Perhaps there are other applications where
one needs a response concept that selects interior solution
points, for instance to avoid division by zero. In that case
the minimal information best responses seem suitable.


