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Abstract

Extensive games of perfect information can be used as a model for multi agent deci-
sion making. For instance auctions and voting can be modeled as extensive games. An
extension of modal logic called GLP− is defined that allows us to express whether each
agent has the appropriate amount of influence in the decision making process. In this
paper a complete axiom system for this logic is presented.

1 Introduction
The Internet is not only a source of information, it also allows people to interact with each
other. Sometimes this happens informally, for instance with chat and messaging services. In
other cases the interaction occurs according to a formal protocol, for instance in the case of
electronic auctions, games such as chess and electronic opinion polls. These formal protocols
can be modeled as games, in which several agents interact in order to reach a certain outcome.
Typically one wants to establish that such a protocol is fair, in the sense that each agent has
the appropriate amount of influence on the outcome. In this paper a logic is presented that
can express these fairness properties. This logic is interpreted over extensive games of perfect
information.

In figure 1 an example extensive game form is shown. In this game form agent A first
decides whether a should hold or not. Then agent B can decide whether proposition b
should hold or not. A possible story could be that a indicates that A dresses in black, and b
indicates that B dresses in black. This protocol has four outcomes, which are represented by
leaf nodes. Each arrow corresponds to an action that an agent can take. When B makes a
decision, he knows what agent A has chosen. This property is called perfect information. In
games such as poker this is not always the case, because a player does not know what cards
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Figure 1: A simple game form G1
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the other players are holding. Poker is thus an imperfect information game. In this paper
only perfect information games are discussed. One reason for this is that these games are
easier to implement, because there is no need to hide any information from anyone.

This paper is structured as follows. The next section, section 2, contains basic definitions.
Section 3 presents an axiom system for this logic. In section 4 related work is discussed and
section 5 is the conclusion.

2 Definitions
Extensive games can be represented in different ways. The next definitions use sequences of
actions to represent a game tree [7].

Definition 1. A set of finite sequences H is prefix-closed if for any sequence h and action
a it is the case that ha ∈ H implies h ∈ H . For any set of sequences H and h ∈ H we
define the set of next actions A(H , h) = {a | ha ∈ H } and the set of terminal sequences
Z (H ) = {h ∈ H | A(H , h) = ∅}.

Sequences of actions can be used to denote specific plays of a game. Such sequences are
also called histories or runs. Z (H ) denotes the set of all sequences that cannot be extended.
These are called terminal histories or sequences, and correspond to outcomes. The set A(H , h)
consists of all actions that can be played in h. The set H implicitly defines a tree, since one
can think of H as containing all paths in the tree that start from the root and go down the
tree.

Definition 2. An interpreted extensive game form F is a tuple F = (Σ,H , turn ,P , π), where
Σ is a finite sets of agents, P is a finite set of atomic propositions, H is a non-empty, prefix-
closed set of finite sequences, turn is a function turn : H \ Z (H ) → Σ and π : Z (H ) → 2P

returns the true atomic propositions of any terminal history.

A game form is different from a game because it does not contain the preferences of
players. The word ‘interpreted’ indicates that the structure contains atomic propositions.
These atomic propositions allow us to evaluate propositional logic formulas in the outcome
states. Strategies are often defined only for single agents. Here a slightly more general
definition is used that allows for coalition strategies. Each strategy is intended for a set of
agents. A strategy returns exactly one action. This is often called a pure strategy [7].

Definition 3. Let F = (Σ,H , turn ,P , π) be a game form and Γ ⊂ Σ a coalition of agents. A
strategy σΓ for Γ is a function with domain {h ∈ H | turn(h) ∈ Γ} such that σΓ(h) ∈ A(H , h).

Definition 4. Let F = (Σ,H , turn ,P , π) be a game form and σΓ a strategy. The updated
model F ′ = Up(F , σΓ) is defined as F ′ = (Σ,H ′, turn ′,P , π′) where H ′ is the largest subset of
H such that ha ∈ H ′ implies h ∈ H ′ and either turn(h) /∈ Γ or a = σΓ(h).

An example game form has already been introduced and displayed in figure 1. This
game form can be described as F1 = (Σ,H , turn ,P , π) with Σ = {A,B}, P = {a, b}, H =
{ε, y ,n, yy , yn,ny ,nn}. The function turn is defined such that turn(ε) = A and turn(y) =
turn(n) = B . The interpretation function π satisfies the following: π(yy) = {a, b}, π(yn) =
{a}, π(ny) = {b} and π(nn) = ∅. Agent A has two strategies σA in this example, and agent
B has four strategies.
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Logical Language
In this subsection the language GLP− is presented. This language depends on a set of agents
Σ and a set of atomic propositions P , but these are omitted for readability. This language is
a restriction of the language GLP , which stands for Game Logic with Preferences [9].

Definition 5. Let con(L) = {⊥, φ → ψ | φ, ψ ∈ L} and let propositional logic P be defined
as the smallest language L such that L = P ∪ con(L). Let glp−(L) = {[Γ : φ]�φ,�φ | φ ∈
P,Γ ⊂ Σ}. The language GLP− is the smallest language L such that L = glp−(L) ∪ con(L).

In this definition we use a minimal set of logical connectives, consisting of implication and
falsum. All other usual connectives can be defined in the following way.

¬φ = φ→ ⊥ φ↔ ψ =(φ→ ψ) ∧ (ψ → φ)

φ ∨ ψ = ¬φ→ ψ φ∇ψ =¬(φ↔ ψ)

φ ∧ ψ = ¬(φ→ ¬ψ) ♦φ =¬�¬φ

The two languages propositional logic and GLP− are distinct. The formulas p∨¬p and p → q
are propositional logic formulas, but are not themselves GLP− formulas. Propositional logic
is interpreted over a set T ⊂ P of atomic propositions.

T |= ⊥ never
T |= p iff p ∈ T
T |= φ→ ψ iff not T |= φ or T |= ψ

The logic GLP− is interpreted over an interpreted extensive game form F = (Σ,H , turn ,P , π).

F |= ⊥ never
F |= φ→ ψ iff not F |= φ or F |= ψ
F |= �φ iff ∀h ∈ Z (H ) : π(h) |= φ
F |= [Γ : φ]�φ iff ∃σΓ∀h ∈ Z (H ′) : π′(h) |= φ

where (Σ,H ′, turn ′,P , π′) = Up(F , σΓ)

Intuitively, the box �φ is a universal quantifier. It expresses that φ holds in every state. The
construction [Γ : φ]�φ expresses that Γ has a strategy so that if it uses this strategy, any
reachable outcome satisfies φ. The next table lists properties that are true for the example
F1.

F1 |= [A : a]�a ∧ [A : ¬a]�¬a

F1 |= [B : b]�b ∧ [B : ¬b]�¬b

F1 |= [B : a ↔ b]�(a ↔ b) ∧ [B : a∇b]�(a∇b)

One can conclude that agent B , because it goes second, can control more. If fairness demands
that A and B have the same amount of influence, then this protocol is not fair.

3 Completeness
Using the interpretation of GLP−, one can test whether a candidate protocol F has a desired
property φ by checking whether F |= φ. This is called model checking [4] and for many logics
there are computer programs that can do this efficiently. It has been proven that for GLP ,
and thus for GLP−, the model checking problem is tractable [9]. In this section we focus on
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the more difficult problem to determine whether there exists a protocol F that satisfies a given
property φ. We define an axiom system that can be used to construct proofs. If a formula φ
has no model, then a proof of ¬φ exists. If ¬φ cannot be proven then the completeness proof
suggests a method for constructing a protocol F so that F |= φ.

The notation ` φ is used to express that it has been proven that F |= φ holds for all
models F . If φ is an instance of one of the axioms given below, then one can immediately
conclude ` φ. If one has established ` φ and ` φ → ψ, then the rule modus ponens can be
used to conclude ` ψ. These are the only rules that we allow. This Hilbert style of proofs is
common in modal logic [3].

The next table lists four axioms that can be written without the coalition operator [Γ : φ].
For the greek letter τ one may substitute any instance of any propositional logic tautology
that one can contain using uniform substitution. For instance [Σ : p]�p ∨ ¬[Σ : p]�p is an
instance of p ∨ ¬p. For all other greek letters one may substitute any propositional logic
formula.

τ tautology

�τ box-tautology

�φ→ ♦φ seriality

�(φ→ ψ) → (�φ→ �ψ) distribution

One can prove, but this is not done here, that these axioms are complete for the fragment of
GLP− in which the construction [Γ : φ] is not used. The axiom seriality follows from the
fact each game form must have a non-empty set of runs.

The remaining axioms are listed in the table below. One may substitute any formula for
φ, ψ, as long as the result is in GLP−.

([Γ : φ]�φ ∧ �(φ→ ψ)) → [Γ : ψ]�ψ specificity

[Γ : φ]�φ↔ ¬[Σ\Γ : ¬φ]�¬φ minimax

[Γ : φ]�φ→ [Γ ∪ Γ2 : φ]�φ monotonicity

[∅ : φ]�φ↔ �φ nobody

All axioms that are given here are sound, which means that for each axiom φ and game
form F it is the case that F |= φ. The proofs are not hard and have been omitted for space
considerations. In the remainder of this section it is proven that this set of axioms is complete:
that each valid formula φ has a proof.

Definition 6. A formula φ is valid iff for any model F it is that case that F |= φ. A formula
φ is satisfiable if there is a model F so that F |= φ. A formula is consistent if not ` ¬φ.

Definition 7. A set of formulas S ⊂ GLP− is maximally consistent if the following con-
ditions are all met: ⊥ /∈ S, all axioms φA ∈ S, if φ, φ → ψ ∈ S then ψ ∈ S, and for any
formula φ either φ ∈ S or ¬φ ∈ S.

It is a well known fact that for each consistent formula φ one can find a consistent set S
so that φ ∈ S [3]. Furthermore it can be proven that for any model F , the set {φ | F |= φ}
is maximally consistent.

Definition 8. A formula of the form �φ is basic. A formula of the form [Γ : φ]�φ is called
simple. For any set S of formulas, a simple formula [Γ : ψ]�ψ ∈ S is specific if there is no
[Γ : χ]�χ ∈ S so that �(χ→ ψ) ∈ S but not �(ψ → χ) ∈ S.
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The next lemma tells us that it is enough to check only formulas that are simple and
specific to ensure that two maximally consistent sets are the same.

Lemma 1. Suppose that S and T are maximally consistent sets. Let S ′ contain all basic
and all specific formulas of S and T ′ all basic and all specific formulas of T . If S ′ = T ′ then
S = T.

Proof. Suppose that S and T are maximally consistent sets. Let S ′ contain all basic and
all specific formulas of S and T ′ all basic and all specific formulas of T . Suppose also that
S ′ = T ′. Let ξ = [Γ : ψ]�ψ ∈ S . We have to show that ξ ∈ T . If ξ is specific, then ξ ∈ S ′,
thus ξ ∈ T ′ and ξ ∈ T . If not, then there is some ‘more specific’ formula [Γ : χ]�χ ∈ S
so that �(χ→ ψ) ∈ S . This formula itself need not be specific, since there might be an
even more specific formula that rules out [Γ : χ]�χ. However, since P is finite, there is
only a finite number of possible assignments. This means there must be a specific formula
[Γ : χ]�χ ∈ S ′ and �(χ→ ψ) ∈ S . Since S ′ = T ′ we know that [Γ : χ]�χ ∈ T ′ and thus
[Γ : χ]�χ ∈ T . Since �(χ→ ψ) ∈ S is basic, we can conclude that �(χ→ ψ) ∈ S ′ = T ′ ⊂ T .
Using the axiom specifity and the fact that T is maximally consistent, we conclude that
[Γ : ψ]�ψ ∈ T .

It is now proven that S and T contain the same simple formulas. Consider now a formula
of the form ¬[Γ : ψ]�ψ. If ¬[Γ : ψ]�ψ ∈ S , axiom minimax can be used to show that
[σ \ Γ : ¬ψ]�¬ψ /∈ S . Since this is a simple formula, we conclude that [σ \ Γ : ¬ψ]�¬ψ /∈ T .
Using minimax again we obtain ¬[Γ : ψ]�ψ ∈ T .

A useful property of maximally consistent sets is that if φ ∧ ψ ∈ S then φ ∈ S and
ψ ∈ S . Moreover if φ ∨ ψ ∈ S then φ ∈ S or ψ ∈ S (or both). For every formula φ ∈ S in
conjunctive form we can conclude that φ ∈ T . Since every propositional formula is equivalent
to a formula in conjunctive normal form, we may conclude that for any formula φ it is the
case that φ ∈ S ⇔ φ ∈ T . Therefore S = T .

Theorem 1. For all φ ∈ GLP− : If φ is consistent then φ is satisfiable.

Proof. Let a consistent formula φ ∈ GLP− be given. Let S be a maximally consistent set
so that φ ∈ S and let S ′ contain all basic and specific formulas of S . Below a model F is
constructed so that ∀ψ ∈ S ′ : F |= ψ. Lemma 1 can then be used to conclude that F |= φ.

The model F we are searching for is defined recursively using a function F (C ,A, r). The
outcome of this function depends on a set of basic and simple formulas C , on a set of active
agents A and on a representation function r : Σ → 2Σ. The set r(X ) contains the agents
that are represented by agent X . The model F is defined as F = F (S ′,A0, r0). Initially, all
agents are active agents: A0 = Σ. Each agent initially only represents itself: r0(X ) = X . The
function r can also be applied to coalitions of agents. This is defined by r(Γ) = ∪X∈Γr(X ).
The pair A, r can be used calculate a new set set of simple and basic formulas S (C ,A, r)
from a given subset C .

S (C ,A, r) = {�ψ | �ψ ∈ C} ∪ {[Γ : ψ]�ψ | Γ ⊂ A, [r(Γ) : ψ]�ψ ∈ C}

The game form F (C ,A, r) is defined in the following way. If A contains exactly one active
agent X , then we define a model F (C ,A, r) = (Σ,H , turn ,P , π) where H = {ε, ψ | [X :
ψ]�ψ ∈ C , [X : ψ]�ψ is specific}. Define turn(ε) = X and let π(ψ) be any set such that
π(ψ) |= ψ. It is not hard to show that any formula χ ∈ C is satisfied by this model.
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Figure 2: Alternative F2
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Figure 3: Game form F3

If A has two or more members, define F (C ,A, r) = (Σ,H , turn ,P , π) as follows. Take
any agent X ∈ A. Define turn(ε) = X , so that this becomes the acting agent of the current
situation. The set of options A(H , ε) consists of two parts: A(H , ε) = E∪J . The set E consists
of all specific choices of X : E = {ψe |[X : ψe ]�ψe ∈ C is specific}. These choices lead to
the subgame F (C ′,A, r) where C ′ = {�ψe ,�ψ, [Γ : χ]�χ | �ψ, [Γ : χ]�χ ∈ C ,X /∈ Γ}.
The set J contains all other active agents: J = {Y ∈ A | Y 6= X }. These choices Y lead
to the subgames F (CY ,A \ {X }, r ′) where CY = S (C ,A \ {X }, r ′), and r ′ is such that
r ′(Y ) = {Y ,X } and r ′(Z ) = {Z} for Z 6= Y . Intuitively, choosing Y means that agent Y
will now make all decisions for agent X .

We must show that F (C ,A, r) satisfies all formulas in C . This is done using induction.
The induction hypothesis is that all smaller models have this property. First consider formulas
of the form �φ ∈ C . These formulas are present in each set C ′ that is used to construct a
subgame. Using the induction hypothesis we know that all outcomes of all choices satisfy φ,
and thus F (C ,A, r) |= �φ.

Consider now [Γ : ψ]�ψ with X /∈ Γ. This formula is also present in any set C ′ and by
induction hypothesis we know that there is thus a strategy in each subgame for Γ to ensure
ψ. We can combine these subgame strategies into a strategy σΓ for the whole game that
guarantees ψ, and thus F (C ,A, r) |= [Γ : ψ]�ψ.

Finally consider [Γ : ψ]�ψ with X ∈ Γ. If Γ = {X } then there is some specific ψe ∈ E so
that �(ψe → ψ) ∈ C . This choice leads to a submodel F (C ′,A, r). From ψe ∈ C ′ and the
induction hypothesis it follows that there is a strategy σX for this submodel that guarantees
ψ. Agent X can now use a strategy σ′

X
so that σX (ε) = {ψe} and within the subgame

F (C ′,A, r), strategy σ′

X
makes the same choices as σX . This strategy guarantees ψ and thus

F (C ,A, r) |= [Γ : ψ]�ψ. If there is more than one agent in Γ, then X can join any of the
other agents Y ∈ Γ. By induction the coalition Γ \ {X } will have a strategy for guaranteeing
ψ in the subgame F (C ′,A \ {X }, r ′), and thus F (C ,A, r) |= [Γ : ψ]�ψ.

The model F = F (S ′,A0, r0) thus satisfies all formulas ψ ∈ S ′. From lemma 1 it follows
that F satisfies all formulas in S and thus F |= φ.

Corollary 1. For any protocol F there is an equivalent protocol F ′ in which each agent only
moves once, and all agents move in a given order.

This corollary can be illustrated for the example protocol of figure 1. According to a proof
there should be an equivalent protocol in which agent B moves first. This is indeed the case,
and the protocol is illustrated in figure 2. One can see that B in this case can choose from
four options.

In the construction of the proof, each agent has a choice whether it want to use one of its
abilities (set E ) or whether it wants to join a specific agent (set J ). In order to illustrate these
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two possibilities, consider the property φ3 = [A : p]�p ∧ [B : p]�p ∧ [AB : ¬p]�¬p. There
is only one atomic proposition in this example, so P = {p}. There are only four distinct
formulas that one can express: p,¬p,⊥, p → p. Suppose that S is a maximally consistent set
containing φ3. The ability [A : p]�p is more specific than [A : p → p]�(p → p). Thus agent
A has one specific ability p. In the game form F3 that is constructed in the proof, agent A
has two options. It can use this ability, or it can join agent B . The game form is depicted in
figure 3. In this protocol agent A and B have exactly the same amount of influence on the
outcome, thus one could call this protocol fair.

4 Related Work
Alternating time temporal logic is an extension of temporal logic that, like GLP−, allows one
to specify the powers of coalitions of agents [2]. Initially ATL was mostly used for model
checking, using the model checker Mocha [1]. Only recently has a complete axiom system for
ATL been discovered [6]. This system was inspired by Pauly’s completeness proof for coalition
logic [8]. The logic ATL is more expressive and thus complex than GLP− because it extends
temporal logic. Another difference between GLP− and ATL and coalition logic is that GLP−

only interprets propositions at outcome states. In the other two logics outcome states are not
treated differently from intermediate states. The most striking difference however is the fact
that both ATL and coalition logic allow for concurrent moves. The class of game forms that
they allow is thus wider. Once consequence is that the minimax axiom does not hold for ATL
and coalition logic.

In future work I hope to compare complexity results for mechanism design using the
presented axiom system with non-logical approaches for the automated design of protocols [5].

5 Conclusion
The logic GLP− was introduced for verification of multi agent protocols. This paper contains
a complete axiom system for this logic. This makes the logic suitable for automated design
of protocols, and allows for more elegant verification. One of the corollaries of the proof is
that the order in which agents move does not matter. For every ordering of agents and every
consistent speficication one can find a protocol. This result, and the fact that this logic does
not allow concurrent moves, sets this logic apart from other frameworks such as ATL and
coalition logic.
Acknowledgement: Olivier Roy has provided many valuable comments and suggestions.
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